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We report the results of an experimental study of the finite-amplitude thresholds for
transition to turbulence in a constant mass flux pipe flow. The flow was perturbed
using small impulsive jets and push–pull disturbances from holes in the pipe wall.
The flux of the disturbance is used to define an amplitude for the perturbation and
the critical value required to cause transition scales in proportion to Re−1 for jets.
In this case, the transition is catastrophic and the scaling suggests a simple balance
between inertia and viscosity. On the other hand, the threshold scales as Re−1.3 or
Re−1.5 for push–pull disturbances with the precise value depending on the orientation
of the perturbation. Further, the amplitudes required to cause transition are typically
an order of magnitude smaller than for jets. When the push–pull perturbation was
applied in the oblique direction, streaks and hairpin vortices appeared during the
growth phase of the disturbance. The scaling of the threshold and the growth of
structures are both consistent with ideas associated with temporary algebraic growth.

1. Introduction
The onset of turbulence in the flow through a long circular straight pipe has

intrigued scientists since the original experiments of Reynolds (1883). The problem is
simple in concept and yet the origins of the observed turbulent motion remain unclear
with the principal issue being that all theoretical and numerical work using classical
stability approaches suggests that the flow is linearly stable (Drazin & Reid 1980),
i.e. it remains laminar for all Re and yet most practical pipe flows are turbulent.
Hence, there is a conflict between standard stability theory and observation. (Here,
Re = UD/ν where U is the mean velocity, D is the pipe diameter, and ν the kinematic
viscosity of the fluid.) Recently, significant attention has been paid to the possibility of
algebraic growth of small-amplitude disturbances because of the generic non-normal
properties of the Navier–Stokes equations. The historical development of these ideas
is discussed in Schmid & Henningson (2001) and Schmid (2007) and their impact on
transition in pipe flow is reviewed by Kerswell (2005).

Reynolds (1883) found two critical values for which the transition to turbulence
occurs. A critical value of Re = 2260 was found when experiments were performed
using industrial pipes and the mains water supply and a higher value of Re = 13 000
was obtained in a more controlled experiment using precision equipment. Pfenniger
(1961) managed to extend the range of laminar pipe flows up to Re = 100 000.
Indeed, many other experiments (e.g. by Leite 1959; Wygnanski & Champagne 1973)
confirm that the flow is stable to small disturbances. Thus, it is natural to assume that
finite-amplitude perturbations are responsible for triggering turbulence and, as Re
is increased, a smaller amplitude is required to trigger transition. A question which
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may be asked is how does the critical amplitude that can trigger transition scale
with Re? This issue has been addressed in several recent studies and quantitative
estimates have been provided for pipe flows by Darbyshire & Mullin (1995), Draad,
Kuiken & Nieuwstadt (1998) and Hof, Juel & Mullin (2003). Darbyshire & Mullin
(1995) used a variety of disturbances including impulsive injection and suction to
perturb fully developed Poiseuille flow. They found that the amplitude required to
produce turbulence diminishes as the Re increases, but remained finite even at values
of Re ∼ 10 000. Draad et al. (1998) used a porous pipe section to apply periodic
suction and injection, and found different scalings depending on the frequency of the
disturbance. Hof et al. (2003) used a boxcar impulsive disturbance with six small jets
arranged azimuthally and found that for a sufficiently long boxcar, the amplitude
scales as Re−1 over the range Re ∼ 2000–20 000. (N.B. Extracting exponents directly
from the results of Darbyshire & Mullin (1995) is difficult since their perturbation is
short and triangular.) A qualitatively similar scaling law for threshold levels was also
reported for boundary-layer transition by Govindarajan & Narasimha (1991).

A motivation behind seeking scaling laws is that insights into the transition process
can be uncovered, as discussed by Trefethen et al. (1993). One difficulty in making a
direct comparison between the results of experimental and theoretical investigations is
that the amplitude of the physical disturbance cannot easily be related to perturbations
used in numerical studies. Direct numerical simulations of pipe flows by Shan, Zhang
& Nieuwstadt (1998), Meseguer (2003) and Eckhardt & Mersmann (1999) find scaling
laws which suggest Re−1 to Re−1.5. In all of these investigations, periodic boundary
conditions are used with relatively short calculation domains and they therefore
cannot capture the observed flow structures such as the puffs studied by Wygnanski
& Champagne (1973) in transitional pipe flow in the range Re ∼ 2000–4000. This
issue is discussed by O’Sullivan & Breuer (1994) who argue that the minimum
length for the calculation domain is ∼30D if realistic numerical results are to be
obtained over this range of Re. Mellibvosky & Meseguer (2006) studied the effects of
streamwise-independent finite-amplitude perturbation and found scaling laws which
give relationships of between Re−1 and Re−1.5 using periodic boundary conditions
with calculation domains which were 20 to 100D long.

It is clear that the scaling laws discussed above cannot hold for very small Re since
the flow is accepted to be globally stable for Re � 1800. A possible method for testing
this assumed lower limit of stability would be to inject large-amplitude perturbations
into the flow and observe their decay. This method was used by Mullin & Peixinho
(2005) to demonstrate that there is a sharp cutoff at Re ∼ 1760, i.e. below this value,
turbulent flow could not be sustained. However, injecting large disturbances into
the flow can have significant effects on the mean flow distribution, which can lead
to unusually long transient effects (Binnie & Fowler 1948). Further, introducing ad
hoc disturbances into an infinite-dimensional system is generally questionable and to
obviate this difficulty, Peixinho & Mullin (2006) studied the reverse transition, i.e. they
investigated the relaminarization of a specific state, the puff. These results have been
confirmed in numerical investigations by Willis & Kerswell (2007). Peixinho & Mullin
(2006) observed that modulated wavetrains emerge from the long-term transients.
They have features which are qualitatively similar to the finite-amplitude travelling
waves predicted by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004).

When a detailed study is performed using the impulsive injection of a disturbance,
it is observed that the transition process is catastrophic (Darbyshire & Mullin 1995).
Ideally, a short duration localized disturbance is desired to test the response of the
flow field. Localization can be achieved using a zero net mass flux push–pull system



Finite-amplitude thresholds for transition in pipe flow 171

as shown by Darbyshire & Mullin (1995). However, numerical investigations in jets
by Seidel & Fasel (2001) and boundary layers by Levin (2005) and Levin, Davidson
& Henningson (2005) have shown the importance of the geometry and orientation of
the perturbation. Hence, the strategy we employ here is to use a localized disturbance
which could be oriented with respect to the main flow. The hypothesis we wish to
test is that the breakdown to turbulence will be less abrupt. Moreover, different
orientations of the disturbance might reveal a sequential transition process. Our
objective was to carry out a consistent and comprehensive study of the dependence
of the transition thresholds and the scaling for the critical amplitude versus Re for
different disturbances.

2. Experimental set-up
The pipe had a diameter of D = 20 ± 0.01 mm and was constructed from 105

machined sections 150 mm long which were butted flush so that there was no
measurable gap between each section. The total length of the pipe was 15.75 m
(785.5D) and it was held on a steel backbone and initially aligned using a laser.
A reservoir with a capacity of 100 l was connected to the pipe through a smooth
trumpet-shaped inlet. A stainless steel cylinder with a bore of 260 ± 0.065 mm and a
length of 1180 mm contained a piston of diameter 259.68 ± 0.07 mm mounted on a
pair of 12 mm thick lip seals. This device was used to pull the fluid at a constant mass
flux along the pipe using a computer-controlled motor and lead screw arrangement.
Hence, even if the motion became turbulent, the mass flux through the pipe was
unaffected so that Re remained constant.

The facility enabled a laminar flow to be achieved up to Re = 23 000. Poiseuille
flow could only be obtained at such high Re when settling times of 1 h were allowed
between runs. Estimates of the settling period were established empirically and
were presumably related to the decay of any disturbances in the header tank. This
underlines the fact that pipe flow is sensitive to inlet disturbances but, once Poiseuille
flow has developed, a finite-amplitude perturbation is required to cause transition
in practice. The long-term temperature stability of the laboratory was controlled to
±1 K at a mean temperature of 20 ◦C. This control of the background environment
was also necessary to ensure repeatability. Further details of the experiment can be
found in Hof et al. (2003), Mullin & Peixinho (2005) and Peixinho & Mullin (2006).

The disturbance was applied 285 pipe diameters from the pipe entrance, which
ensured that fully developed flow was established for Re � 10 000, the maximum
value used in the present investigation. As discussed by Darbyshire & Mullin (1995)
and Williams (2001), the threshold is probabilistic with a definite distribution so that
a mean value can be estimated with a narrow well-defined width. The width of the
distributions was used to define the error bars indicated on the estimates of the
thresholds.

The disturbance generator (figure 1) is a variant of the system developed by Hof
et al. (2003) and, as in their case, the duration and amplitude of the perturbation can
be changed independently. The injection system contained two valves with switching
times of 1 ms. The rise and fall times were limited by the inertia of the small piston
in the fuel injector. The quantities of fluid involved in creating the disturbance were
small, and lay in the range 0.0001 % to 0.1 % of the pipe volume flux. A schematic for
the specific arrangement for a single jet disturbance is shown in figure 1(a). The fluid
was injected orthogonal to the main flow through a single hole in the pipe wall. In
all, six hole diameters were used: d = 0.5, 1, 1.5, 2, 3 and 4 mm. A typical disturbance
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Figure 1. Schematics of the disturbance mechanisms and pressure trace measurements.
(a) Single jet disturbance mechanism and (b) the associated pressure trace. (c) Push–pull
disturbance mechanism and (d) the associated pressure traces. When the position is 0, the
motor pushes (and pulls) fluid to the reservoir. When the position changes to 1, fluid is
pushed (and pulled) into the pipe at a given amplitude for a given duration which is computer
controlled. The amplitude is proportional to the piston velocity.

pressure trace is presented in figure 1(b). The displaced volume Φinj from the injector
was made non-dimensional using the pipe flux Φpipe and this defined the amplitude
A of the perturbation: A = Φinj/Φpipe . The duration of the injection set the spatial
extent of the disturbed flow since it initially travelled at the mean flow speed. This
enabled us to define a spatial scale for the disturbance which we denote by the length
scale L∗ = Ut/D where t is the injection time.

A diagram of the push–pull mechanism and respective pressure signals are given in
figures 1(c) and 1(d). This was a zero net mass flux disturbance, since an equal quantity
of fluid was pushed and pulled in and out of the pipe through two 1 mm diameter
holes spaced 1 mm apart. The orientation of the disturbance could be changed by
rotating the alignment of the holes in order to obtain streamwise, oblique, spanwise
and anti-oblique disturbances. A schematic representation of the orientation of the
holes is given in figure 4.

The flow state was monitored using Mearlmaid Pearlessence as the flow visualant.
A thin vertical sheet of light was formed using a series of light boxes arranged along
the length of the pipe. A camera, mounted on an external traverse, was used to follow
and record the flow and hence monitor the evolution of disturbances. A typical set of
photographs of the evolution of a disturbance are given in figure 5.

3. Results and discussion
The results are mainly presented in the form of finite-amplitude threshold curves

and can be classified in terms of the specific disturbances used to test the stability
of the flow. The first set of results are concerned with the effects of the injection of
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Figure 2. Effect of the size of the hole (a) Φinj versus L∗ for different jet diameters (squares:
d = 0.2 D; circles: d = 0.1 D; diamonds: d = 0.025 D) for different Re (filled symbols:
Re = 2500; open symbols Re = 5000) and (b) Rejet

c versus d/D. The line is a least-squares fit

Rejet
c ∝ (d/D)−0.5.

small amounts of fluid across the pipe through a single hole. The dependence of the
threshold level on the diameter of the hole has been investigated and comparisons
have also been made with azimuthal injection through a sequence of holes. The final
set of results is concerned with investigating the effects of localizing the disturbance
via push–pull through a pair of holes. Hence, the perturbation contributes zero net
mass flux to the main flow. A hairpin vortex structure has been revealed using this
optimal configuration.

3.1. Single jet disturbance

The amplitude of the injected flux required to cause transition is plotted as a function
of L∗ in figure 2(a) for Re = 2500 and Re = 5000. Note we have used the dimensional
form of the injected mass flux here in order to superpose the results obtained for
different Re. Results are presented for three jet diameters (d = 0.5, 2 and 4 mm)
where each data set indicates the threshold level for transition, i.e. amplitudes have to
be above the respective curve to cause transition. If the duration of the perturbation
was such that L∗ � 6, a nonlinear dependence of the critical value of Φinj on L∗ was
obtained in agreement with Hof et al. (2003) and Hof (2005). However, when L∗ � 6,
the critical disturbance amplitude is independent of L∗, but the level of the threshold
depends on the diameter of the disturbance jet. We use these L∗ independent threshold
levels to construct figure 2(b) where we plot Rejet

c versus the non-dimensional diameter
of the jet d/D. Here, Rejet = 4Φinj/νπd . It can be see that Rejet

c ∝ d−0.5 so that
proportionally larger velocities are required to cause transition as the jet diameter is
reduced.

We now use the L∗ independent threshold levels obtained over a range of Re with
the 4 mm jet to construct a finite-amplitude transition diagram. This is presented in
figure 3 where we plot the critical values of A versus Re together with results obtained
for configuration with six azimuthal jets. One conclusion we can draw is that the
scaling law is independent of the details of the geometry of the jets, i.e. the same
scaling is found for a single orthogonal jet and six azimuthal ones. The net injected
mass flux required to cause transition is approximately a factor of two greater for
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Figure 3. Plot of A versus Re for a single jet of diameter d = 4 mm (squares) and six azimuthal
jets each with diameter d = 0.5 mm (circles). The filled symbols denote the lower bound of Re
for stable puffs. They were obtained by keeping A constant and puffs relaminarized within the
length of the pipe.

the single jet than for the six. Hence, the single jet is a less efficient way to achieve
transition.

The estimates for the lower bound for the threshold are shown using filled symbols
in figure 3. These were obtained using the method reported in Mullin & Peixinho
(2005) and a sharp cutoff in the stability threshold is found. There is consistency
between the data sets for both configurations. The left-hand error bar indicates rapid
decay of the injected disturbance in � 100D and the right-hand a 95 % persistence
of the puff in excess of 500D from the point of injection.

3.2. Push–pull disturbance

The finite-amplitude thresholds for the push–pull disturbances are presented in figure
4 where we also show fits of the single jet data from figure 3 so that an immediate
comparison of the threshold levels can be made. It is clear that a significantly
smaller disturbance amplitude is required to cause transition with the push–pull
configuration than with the single jet as the level is reduced by approximately one
order of magnitude. This observation is consistent with Darbyshire & Mullin (1995).
Various orientations of the push–pull disturbance were used to obtain the results in
figure 4. These were spanwise, oblique, streamwise and anti-oblique, i.e. across, at
45◦, in line and at 135◦ to the mean flow, respectively, as shown schematically in
figure 4.

Each data point was obtained as a statistical average of about 40 experimental
runs where the error bars denote the width of the transition threshold as discussed in
§2 above. A least-squares fit to the streamwise and spanwise data gives an estimate of
−1.3 ± 0.1 with a confidence limit of 93 % for the power-law dependence of A on Re.
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Figure 4. Finite-amplitude curves for the push–pull disturbance. In the schematic diagrams
of the geometry of the disturbances presented in the lower left-hand corner of the figure, ⊗
indicates that fluid is pulled out of the pipe and � indicates that fluid is pushed into the pipe.
(a) Spanwise and streamwise disturbance with a Re−1.3 fit. Also shown is the Re−1 fit for the
single jet data. (b) Oblique and anti-oblique disturbance with a Re−1.5 fit together with the
Re−1 fit for the single jet data.

The corresponding data for the oblique and anti-oblique data gives −1.5 ± 0.1 with a
confidence limit of 99 %. Both of these relationships are significantly different from
−1. They are in accord with ideas of algebraic growth as discussed by Trefethen et al.
(1993), O’Sullivan & Breuer (1994), Grossmann (2000) and Mellibvosky & Meseguer
(2006). Inertial effects are now greater than viscous dissipation so that small-amplitude
perturbations can initially grow because of non-normal effects (Henningson & Kreiss
2005). Thus, we were directed towards investigating the growth phase of disturbances
and the results of this are outlined in the following section.
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Figure 5. A sequence of flow-visualization images showing the development of a disturbance
from the oblique push–pull perturbation with A = 0.0023 at Re = 2200. (a–e) The disturbance
was injected in the plane of the photograph and (f –j ) the disturbance was injected in the
direction of the view. Images taken at (a, e) 0.1, (b, f ) 0.2, (c, g) 0.6, (d, h) 1 and (e, i) 1.5
seconds from the beginning of the injection using a camera travelling at the same speed as the
flow.

3.3. Flow visualization

We reinforce the above discussion on algebraic growth by showing the flow patterns
associated with the development of an oblique disturbance close to the critical
amplitude (figure 5). There are two sequences of flow visualization photographs. In
figures 5(a) to 5(e), the disturbance was injected in the plane of the photograph and
in figures 5(f ) to 5(j ), it was injected in the direction of the view. In all cases, the
images were taken such that the small holes through which the disturbance passed,
are located at the left-hand edges of each of figures 5(a), 5(b), 5(f ) and 5(g) and the
flow is from left to right.

The principal feature we wish to highlight, is the appearance of regular vortices
which have a horseshoe-like structure (Klebanoff, Tidstrom & Sargent 1962; Acarlar
& Smith 1987). Although these features are clearly nonlinear, they form part of
a transition sequence and are hence different from the catastrophic events found
using jets and azimuthal disturbances. Such structures have been found as secondary
instabilities in the breakdown of low-speed streaks in numerical investigations of
boundary-layer transition (Brandt 2007). The wavelength associated with the vortices
in figure 5, is approximately 0.5D and is independent of Re over the range 2000 to
3000. For disturbance amplitudes less than critical, the horseshoe vortices appeared in
transient form and eventually decayed as they were swept downstream. For amplitudes
above the critical range, as shown here, they developed secondary structures which
penetrated the central flow and transition to a puff developed rapidly. Vortices of this
type have also been observed where periodic forcing was applied to pipe flow using a
blowing and suction mechanism over a thin azimuthal section (van Doorne 2004) and
using periodic forcing (Han, Tumin & Wygnanski 2000). However, the zero net mass
flux push–pull disturbance used here requires a disturbance an order of magnitude
smaller and is localized.
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4. Conclusions
The stability of pipe Poiseuille flow has been tested using several finite-amplitude

disturbances. The critical amplitude required to cause transition scales as Re−1 for
single crossflow jets and arrays arranged azimuthally. These results are in agreement
with Hof et al. (2003) and, moreover, the single jet has self-consistent behaviour.
The threshold amplitude for push–pull disturbances is significantly lower than simple
injection, and the scaling law exponents lie in the range −1.3 to −1.5. These are
consistent with the possibility of transient growth in the initial steps of the transition
process. Evidence for this has also been produced in the form of horseshoe structures
using flow visualization and these are known to play a central role in boundary-layer
transition as discussed by Klebanoff et al. (1962) and Kachanov (1994).

These new observations of a sequential transition sequence are in accord with ideas
put forward by O’Sullivan & Breuer (1994). They showed evidence for transient growth
in a numerical investigation of transition in a pipe and made the observation that the
transient phase was more evident when small-amplitude perturbations were applied
whereas it tended to be swamped for large perturbations. A convincing argument is
made that the energy required to enable the growth of small perturbations is extracted
from the mean flow. On the other hand, large perturbations distort the mean flow
and algebraic growth is suppressed. All of the amplitudes of the perturbations used
for the push–pull cases are �0.1 % and this is possibly why we have been able to find
this sequence.

We speculate that suction through wall may be the most significant part of the new
perturbation since this will induce a favourable pressure gradient towards the wall.
Hence, fast-moving fluid will be diverted from the central flow to the wall, thereby
creating an inflection point in the velocity profile. Details of the subsequent transition
process are, as yet, unclear and this will require an extensive quantitative investigation
using particle image velocimetry. This is planned for the near future.
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